Status of the T2K Experiment

CAP 2006 June 12, 2006

Jürgen Wendland UBC

- Three neutrino flavor mixing
- The T2K Experiment

- SK

- On-axis detectors
- Off-axis detectors (ND280)
- Summary

Two Flavor Oscillation

- Conversion probability in vacuum

$$P(\nu_{\beta}|\nu_{\alpha}) = \left\langle \nu_{\beta}(t) \middle| \nu_{\alpha}(0) \right\rangle^{2} = \sin^{2} 2\theta \sin^{2} \left(\frac{c^{3}}{\hbar} \frac{\Delta m^{2} L}{4E} \right)$$

- \rightarrow No mixing for massless v's
- $\rightarrow L/E$ must be large for small mass differences

Atmospheric neutrinos: $\approx (v_{\mu} \rightarrow v_{\tau})$ $\Delta m_{atm}^2 = 1.5 - 3.5 \cdot 10^{-3} \, eV^2$ $36.8^\circ < \theta_{atm} < 45^\circ$ Solar neutrinos: $\approx \left(\nu_e \rightarrow \nu_\mu \right)$ $\Delta m_{\text{solar}}^2 = 8.0_{-0.4}^{+0.6} \cdot 10^{-5} \,\text{eV}^2$ $\theta_{\text{solar}} = \left(33.9_{-2.2}^{+2.4} \right)^\circ$

Three Neutrino Flavor Oscillation

Conversion probability:

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \Re \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin^{2} \left(1.27 \Delta m_{ij}^{2} L/E \right) + 2 \sum_{i>j} \Im \left(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin \left(2.54 \Delta m_{ij}^{2} L/E \right)$$

Described by two Δm^2 , three θ 's and one CP phase (δ)

Maki-Nakagawa-Sakata Matrix

... Three Neutrino Oscillations

- θ_{13} < 9 degrees
- CP violation
 - Small in quark sector
 - θ_{13} must be > 0
 - Experimental signature:
 - $P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \neq P\left(\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}\right)$
 - required for leptogenesis

Questions

- How many neutrino flavors exist?
- What are the squared mass differences?
- What are the absolute neutrino masses?
- Are neutrinos their own anti-particles?
- What are the mixing angles?
- Does neutrino behavior violate CP invariance?

🔶 ~ Tokai-to-Kamioka (T2K)

T2K

- Long baseline neutrino oscillation experiment
- JPARC 50GeV proton synchrotron
- Intense v_{μ} beam
- E_{v} < 1GeV
- L = 295km

T2K, Phase I – Goals

• Measure electron neutrino appearance (look for electron neutrinos at far detector)

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}$$

- → first detection of v_e appearance, or improve upper limit on $\sin^2 2\theta_{13}$ by factor of 20
- Measure muon neutrino disappearance (find reduction in muon neutrinos at far detector)

→ Improve precision:

$$\sin^2 2\theta_{23} \rightarrow \approx \pm 1\%$$
 $\Delta m_{23}^2 \rightarrow \approx \pm 2\%$

The Far Detector

Super-Kamiokande III

- 50 kt water Cerenkov detector
- Depth of 1000m (2700mwe)
- 22.5kt fiducial volume
- 11,465 PMTs
- All tubes fixed as of June 2006

Neutrino Beam

 $p \rightarrow \pi X \rightarrow \mu \nu_{\mu} X$

→ E tuned to oscillation maximum

York U, U of T, TRIUMF Proton Beam Monitor Service pit Transformer $p \rightarrow \pi X \rightarrow \mu \nu_{\mu} X$ Shield **ND280** 22mmuon monitor Proton beam monitor: Iron structure Concreté Measure beam position at target structure

- Neutrino energy shifts by 2.2MeV / mm
 - Flux shifts by 0.6% / mm
- Measure beam angle to 0.5mrad
 - 0.9m target: 0.5mrad means position shift <0.5mm
 - Measure in combination with proton monitor 3m upstream
- Real time feedback of beam position to accelerator group

... Optical TR Monitor

Ray tracing simulation of optics:

- Simulation validated with table top optics system
- Here, shift beam position by 1mm; can reconstruct beam position from the centroid:

York U, U of T, TRIUMF

- Transition radiation emitted when charged particle crosses the boundary of two materials with different permittivity
- Light output: 10^13 photons / pulse
- Readout with optical system

York U, U of T, TRIUMF

Image Plane Position [pixel]

OTR NRC test beam

- NRC LINAC (20MeV electrons)
- Scaled version (15%) of actual OTR optics

Obtained detailed images of beam width, position, intensity

ND280 group

- Canada
 - UBC, Regina, Toronto, Victoria, TRIUMF, York
- France
 - CEA/Saclay
- Italy
 - Bari, Napoli, Padova, Rome
- Japan
 - Hiroshima, KEK, Kobe, Kyoto, ICRR, Tokyo
- Korea
 - Chonnam, Dongshin, Kangwon, Kyungpook, Gyeongsang, Sejong, Seoul, SungKyunKwan

• Russia

- INR Moscow
- Spain
 - Barcelona, Valencia
- Switzerland
 - Geneva
- United Kingdom
 - Imperial, Lancaster, Liverpool, Queen Mary, CCLRC, Sheffield, Warwick
- United States
 - Louisiana State, Colorado State, Stony Brook, Rochester, Washington

ND280 Hall

On axis neutrino detector (NGrid)

- E_{v} at beam center
- Massive detector
 - Scintillator + iron
 - $1m^2 \times 3m$ elements
- Proton beam position with 3mm precision

Off-axis near detector (ND280)

Measure flux and spectrum:

- v_{μ} in CCQE: $v_{\mu} + n \rightarrow p + \mu^{-} \implies \Phi_{\text{near}} \sigma_{\text{CCQE}}$
- backgrounds to CCQE: $\Rightarrow \sigma_{non-CCQE} / \sigma_{CCQE}$ $CC1 \pi^+: \nu_{\mu} + p \rightarrow p + \pi^+ + \mu^ NC1 \pi^+: \nu_{\mu} + p \rightarrow n + \pi^+ + \nu_{\mu}$ $NC1 \pi^0: \nu_{\mu} + N \rightarrow N + \pi^0 + \nu_{\mu}$ Beam ν_e photons ...
- v_e flux, spectrum, and cross sections
- CCQE theoretically well understood

Extrapolate to SK with beam MC

A highly segmented large volume detector capable of charged and neutral particle ID and energy measurements.

Off axis ND280

- UA1 magnet at 0.2 T
- Photons and π^{0} 's:
 - Ecal+P0D
 - → Backgds to CCQE
- Charged particles:
 - Tracker (TPC+FGD)
 - → Flux and spectrum via CC quasi-elastic
- Large angle µ's:
 - Side MRD
 - → Improve CCQE+bgds

UBC, TRIUMF

Tracker: FGD

- Measure CCQE:
 - track all charged particles in massive detector
 - Expect 355k CCQE evts for 10^21 POT
- Two modules read out with WLS fibers
 - Plastic scintillator (1.2 t)
 - Plastic scintillator and passive water (0.52 t water)

Tracker: FGD

- Bars will hang in ND basket
- Scintillator bars to be extruded near Vancouver
- Test extrusion successful
- Beam tests underway ...

Photo-Sensors

Silicon PM:

- multipixel APD in Geiger mode
- ~ 100 3000 pixel
- High QE, fast response, immune to magnetic fields

- Gain ~10^6
- Recovery time: ~100ns/pixel
- Op. voltage: ~50 V
- Noise rate: ~100-1000 kHz

Time Projection Chamber UVic, UBC, TRIUMF

- Gas TPC, $2.5m \times 2.5m \times 0.9m$
- *E*, *B* fields parallel, perpendicular to beam
- Outer skin at ground
- Purpose:
 - \diamond Measure \vec{p} of μ 's produced in CCQE
 - →Measure neutrino spectrum
 - Determine charges of reaction products
- Requirements:
 - Momentum resolution <10%
 </p>
 - Minimize amount of inactive space

TPC Field Cage

UVic, UBC, TRIUMF

- Central Cathode <50kV
- Design resembles STAR field cage
- Potential degrader realized by copper strips on composite walls
- Gas envelope reduces gas contamination, drops high voltage Max: 400.04

Gas Amplification

μMEGAS:

• Readout using micro-pattern devices

UVic, UBC, TRIUMF

UVic, UBC, TRIUMF

TPC Prototype

First Events in January

UVic, UBC, TRIUMF

Colored by arrival time

T2K Timeline

Black squares: original proposal green triangles: current expectation

Signals at The Far Detector

muon neutrino disappearance:

 $\sin^2 2\theta_{23} = 1.0 \quad \Delta m_{23}^2 = 2.7 \cdot 10^{-3} \text{eV}^2$

Sensitivity to θ_{13}

- 90% CL contours
- 5 years
- 5 \times 10²¹ POT

Summary

- T2K I to improve measurement of θ_{13} and of atmospheric oscillation parameters
- CP violation in phase II
- Superkamiokande rebuilt
- Near detector R&D in good shape
 - OTR observed with scaled OTR prototype
 - FGD design well advanced, extrusion run of scintillators successful, beam tests underway
 - TPC prototype in operation since January

Extras

The OTR Team

Side muon range detector (SMRD)

Measure large angle muons

Active component:

- Extruded scintillator (87 x 17 x 1 cm³)
- light collected with WLS shifting fiber
- read out by Silicon PMs on both sides

Electromagnetic calorimeter

- Purpose
 - Energy detection around P0D
 - Pi0 recon. around tracker
 - Charged particle ID
- Barrel ECAL (10.3X₀):
 - 25 scintillator layers (4cm x 1cm)
 - Pb layers interleaved
- Downstream ECAL (11.6X₀):
 - 29 scintillator layers (4cm x 1cm)
 - Pb layers interleaved

Pi Zero Detector – P0D

For high statistics measurements of e+m showering particles.

- scintillating bar tracking planes
- front section interleaved with 1.7 tonnes of passive water layers
- → statistical subtraction of events in rear from front used to determine oxygen cross sections

Intermediate detector @ 2km

- *E_v* spectrum @ 2km ~ *E_v* spectrum @ SK w/o oscillation
 → Uncertainties from Far/Near ratio are smaller than wrt ND280m.
- Liquid Ar TPC + Water Cherenkov + Muon Range Detector
 - Very similar v detection to SK
 ... Reduce systematic uncertainties.
 - Excellent Tracking by LAr-TPC
 - ... Precise measurement of
 - v-nucleus interactions.

The experimental facility for 2km detector is not approved yet.

Sensitivity to θ_{13}

FGD Design Details

A TPC's Field Cage

Accurate tracking requires uniform electric field

1

V(x)=Ex

 Approximate continuous field cage with discrete grid

Field cages used by

- ALICE
 - suspended mylar strips (aluminized)
- STAR
 - edged copper on Kapton

Wall Construction

- Composite Wall
 - 0.02mm Copper
 - 1mm G10
 - 10mm Rohacell
- 2.84% radiation length
- Grooves define strips
 - Cut with router
 - Reduce impact of surface charges

ND280 – TPC: Gas choice

- Many space points along the track (90 e⁻/cm)
- Minimize diffusion (D < $260\mu m/(cm)^{1/2}$)
- Slow gas acceptable b/c 3.5s btw spills
 - $\boldsymbol{\checkmark}$ low diffusion, insensitive to E×B distortions and 5µs spill width

x electron attachment on O₂

Tracker – FGD and TPC

Study reactions that produce charged particles:

- v_{μ} CC quasi-elastic (CCQE) scattering to measure the v_{μ} flux and spectrum prior to oscillation
- v_{μ} CC in-elastic scattering that can be misinterpreted by SK as CCQE, thus assigning an incorrect v_{μ} energy
- v_{μ} NC in-elastic scattering that produce π^+ and π^- which can be misinterpreted by SK to be CCQE
- v_e CCQE scattering to determine the v_e flux and spectrum, a main background to v_e appearance at SK

The Off Axis Near Detector (ND280)

Requirements:

- Operate in "high" neutrino rate environment
- Measure neutrino beam before oscillation
 - Muon neutrino flux and spectrum
 - Electron neutrino flux and spectrum
- Measure neutrino interactions and cross sections
 - Understand processes at SuperK

A highly segmented large volume detector capable of charged and neutral particle energy measurements and particle identification