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Neutrino Oscillations 

 Not expected. One of the biggest scientific 
discoveries of the last decade.


 Well established.

 Mass eigenstates (ν1, ν2, ν3) are not the same 

as weak eigenstates (νe, νµ, ντ).
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Simple Two-Generation Case 

 Probability that a neutrino of energy E with 
initial flavor α is observed to still be of flavor α 
after traveling distance L: 

θ is a mixing angle
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€ 

P να →να( ) =1− sin2 2θ ⋅ sin2 Δm
2L
4E( )

€ 

Δm2 ≡ Δmb
2 −Δma

2
sin22θ


Δm2 = 2πEmin /L
can be negative




Three Generations 
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This is not a diagonal matrix!




Oscillation Parameters 

 3 mixing angles, θ12, θ23, θ13 

 1 cp-violating phase δ 

 3 masses m1, m2, m3 ⇒ two independent Δm2 
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What We Know—Solar 

 Super-K, SNO, Gallex, GNO, Kamland (reactor)
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not sin22θ !




What We Know—Atmospheric 

 Super-K, (K2K), MINOS (FNAL long baseline)
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What We Don’t Know 

 sign of                        (mass hierarchy) 

 θ13 

 δ 

  (Majorana)
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€ 

Δm31
2 ≡ m3

2 −m1
2



Measuring θ13 via νµ → νe 
Oscillations 

 Dominant “atmospheric” oscillation is νµ to ντ.

»   τ are not reconstructed, so this is basically νµ 

disappearance.

 νµ → νe can occur, but has not been observed.


» complicated formula… 
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where


and


electron number density


€ 

Δ ≡ Δm31
2 L 4E

α ≡ Δm21
2 Δm31

2 ≈ ±0.03

x ≡ 2 2GFNeE Δm31
2 ≈ ±E 11GeV

Ne =
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where


and


electron number density


α is small


T1 is dominant, ~ 0.5 
at oscillation max


€ 

Δ ≡ Δm31
2 L 4E

α ≡ Δm21
2 Δm31

2 ≈ ±0.03

x ≡ 2 2GFNeE Δm31
2 ≈ ±E 11GeV

Ne =

kinematic phase of oscillation
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where


and


electron number density


This term does not 
depend on θ13, but is 
small


€ 

Δ ≡ Δm31
2 L 4E

α ≡ Δm21
2 Δm31

2 ≈ ±0.03

x ≡ 2 2GFNeE Δm31
2 ≈ ±E 11GeV

Ne =
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where


and


electron number density


Matter effects are larger for 
NOνA (E ~ 2 GeV) than T2K 
(E ~ 0.6 GeV)


€ 

Δ ≡ Δm31
2 L 4E

α ≡ Δm21
2 Δm31

2 ≈ ±0.03

x ≡ 2 2GFNeE Δm31
2 ≈ ±E 11GeV

Ne =
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where


and


electron number density


All three of these terms 
depend on the mass 
hierarchy (sign of Δm31

2)


€ 

Δ ≡ Δm31
2 L 4E

α ≡ Δm21
2 Δm31

2 ≈ ±0.03

x ≡ 2 2GFNeE Δm31
2 ≈ ±E 11GeV

Ne =
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where


and


electron number density


CP violating 
δ → -δ for Æν

CP conserving


x → -x for Æν; 
can fake CPV


€ 

Δ ≡ Δm31
2 L 4E

α ≡ Δm21
2 Δm31

2 ≈ ±0.03

x ≡ 2 2GFNeE Δm31
2 ≈ ±E 11GeV

Ne =

δ only appears in 
product with sin2θ13 




Chooz Experiment 

 Reactor experiment (1997-98) looking for νe 
disappearance. Eν ~ 3 MeV, L ~ 1 km.


   

» Does not depend on δ, x, or mass hierarchy.   
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€ 

sin2 2θ13 < 0.15 90% CL


Double Chooz (upgrade with 
two detectors) aiming for 
sensitivity to ~0.03


€ 

P ν e →ν e( ) =1− sin2 2θ13( ) ⋅ sin2 Δm31
2 L 4E( ) +O α 2( )



MINOS Results on θ13   

 ν beam from NuMI (120 GeV), Eν ~ 3 GeV. Far 
detector in Soudan mine, 735 km. 4 kT fiducial.
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35 events vs 27 ± 5 ± 2 background




Physics Goals of T2K 

 Measure θ13 

  Improve measurements of θ23 and |m31

2|


 So is this the equivalent of a dedicated 
experiment to measure Vub?
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Grand Unified Theories 
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Mu-Chun Chen, Phys. Lett. B652 (2007) 34




Leptogenesis 

 There are models in which strong correlations 
exist between low-energy and high-energy 
mixing parameters.
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M.-C.Chen & K.T. Mahanthappa,  
Phys. Rev. D71 (2005) 035001


 A CPV measurement could shed light on matter 
anti-matter asymmetry of the universe.




T2K OVERVIEW 
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Kamioka

Tokai
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T2K Collaboration 

• ~400 people, (290 PhD physicists)

• Japan (85)
! ICRR, Hiroshima U, KEK, Kobe U, Kyoto U, Miyagi U 

of Education, Osaka City U, U of Tokyo

• UK (83)
! Oxford, Imperial College London, Lancaster U, Queen 

Mary U of London, Sheffield U, STFC/RAL/Daresbury 
Lab, U of Liverpool, U of Warwick

• U.S.A. (66)
! Boston U, Brookhaven Lab, Colorado State U, Duke 

U, Louisiana State U,  Stony Brook U, UC Irvine, U of 
Colorado, U of Pittsburgh, U of Rochester, U of 
Washington

• Canada (65)
! U of British Columbia, U of Regina, TRIUMF, U of 

Toronto,  U of Victoria,York U

• France (51) 

! CEA/DAPNIA Saclay, IPN Lyon, LLR Ecole 
Polytechnique, LPNHE-Paris

• Switzerland (38)
! Bern, ETHZ, U of Geneva

• Poland(29)
! IFJ PAN Cracow, IPJ Warsaw, Technical University 

Warsaw, U of Silesia, Warsaw U,  Wroclaw U

• Russia (13)
! INR

• Spain(11)
! IFIC Valencia, Barcelona/IFAE

• Italy (10)
! INFN-Bari, INFN-Rome, Napoli, Padova, Rome

• Korea (9)
! Chonnam National U, Dongshin U, Sejong U, Seoul 

National U, Sungkyunkwan U

• Germany(3)
! RWTH Aachen U
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T2K Overview 

 Measure θ13 using νµ → νe oscillations.

» also significantly lower errors on 


 Experiment has three components:

» Neutrino beam line, using 30 GeV p from J-PARC

» Near detector ND 280

» Far detector Super-K 


 1st stage: 100 kW × 107 sec [2 × 1020 p.o.t.] 
2nd stage: 1 MW × 107 sec [2 × 1021 p.o.t.] 
full data set: 3.5 MW × 107 sec [7 × 1021 p.o.t.]


26


Not the same 
technology!
€ 

sin2 2θ23,Δm23
2



THE J-PARC FACILITY 
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Joint KEK / JAEA project
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Accelerator Chain 

 Linac: Accelerates H- to 180 MeV
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Accelerator Chain 

 Rapid-cycling synchrotron RCS: 1 MW of  
3-GeV protons (mostly for spallation neutrons)

» also serves as injector for main ring.
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Accelerator Chain 

 Main Ring: synchroton accelerates from 3 GeV 
to 30 GeV. Protons for ν beamline (fast 
extraction) or for Kaon physics (slow extraction)
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Note on Power 
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25 Hz


0.275 → .45 Hz


normally hear 
about 3 GeV 
power “1 MW”


we care about Fast 
Extraction power


 6 [8] bunches into ν line every 3.64 sec [2.2 
sec].  Power = 0.33 P3GeV [0.75 eventually] 




Status 
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Status 

 3 GeV RCS: 210 kW for  
70 sec

»  limited by beam dump 

license.
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 Single bunch operation of MR at 30 GeV; fast 
extraction to ν line.


 However, front end of linac (Radio Frequency 
Quadrupole) is not so healthy…




RFQ Status 

 Accelerates H- to 3 MeV.

 Discharges started in 

Sept 08. Perhaps related 
to incorrect copper alloy, 
and/or inadequate 
vacuum (protons). 
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Interior of TRIUMF RFQ




RFQ Status II 

 Currently limiting RCS (3 GeV) power to 20 kW

 Conditioning 5 hours per day; stable operation 

for 19 hours. 

 Extra pumping being installed

 Replacement RFQ aimed for Spring 2010.
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NEUTRINO BEAM LINE 
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Target Area 
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 30 GeV protons strike 90 cm graphite target, 
creating π± and K±.


 Three horns focus π+, defocus π- 

 π+ → µ+ νµ in 110 m decay volume

 Muon monitor follows beam dump.
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2nd Horn
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Inside the decay 
volume
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Beam Dump
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Muon Monitor  
108 µ/cm2/spill at full power 
(after beam dump)




Monitoring the Beam Location 

 Horns focus point-to-direction.  Need to monitor 
beam location to ~1 mm to ensure correct ν 
beam direction.


 Optical Transition Radiation detector 
immediately in front of target.
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Off Axis Beam 
 Super-K is 2.5∘ off the ν beam direction
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» higher flux at energy of interest; lower flux at higher 
(background-inducing) energies.




Status 

 First beam on target April 23, 2009
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signal in muon monitor




Commissioning 

 Commission with low intensity, single pulses 
until official government inspection on May 28.

» activation


 2nd and 3rd horns then installed over next four 
months. Last remaining major components. 


 Commission at higher power in the fall.
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NEAR DETECTOR 
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ND 280 

On-axis detector

INGRID


Off-axis detector
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37m deep pit


 On- and off-axis detectors 280 m from target
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SMRD


UA1 Magnet 0.15 T


Tracker = 3 TPC 
modules + 2 FGD


Off Axis Detector
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Goals of the Near Detector 

 Measure ν beam direction

 Determine νµ flux and energy spectrum

 Study backgrounds to νe appearance (θ13)

 Study backgrounds to νµ disappearance 
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Ingrid—On-Axis Detector 

 16 modules × 10 tons; 105 interactions/day at 
full power ⇒ ~1 mrad precision on beam 
direction in a day.
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scintillator bars/WLS fiber /iron layers/
Hamamatsu MPPC readout




Quasi-elastic ν Interactions 

  “Golden Mode” for flux measurements: 
charged-current quasi-elastic CCQE
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  lepton θ + momentum ⇒ neutrino energy, 
assuming target is at rest.

» Not quite true — Fermi motion.


  

€ 

ν n→ p−
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Flux Measurements 

 ~30k CCQE events in Tracker (FGD + TPC) 
fiducial volume in initial data set. 


 Main background: charged current events with 
extra π+ (often through Δ resonance)

» skewed kinematics

» constrain with proton angle


 νe ~0.5% of beam at ~0.6 GeV (oscillation 
maximum)
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Backgrounds to Measurement of θ13 
Using νe Appearance 

  Intrinsic νe component of beam

 Neutral current production of π0 


»   

» one photon is missed, other looks like an electron.

»  typically from neutrinos with energies above 

oscillation maximum.
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€ 

ν µ N→ν µ π
0 N



Nuclear Effects 

 Non-negligible hadronic interactions in nucleus.

»  rescattering, absorption, charge exchange

»   π- mostly result from such interactions.


 Neutrino cross sections are not well known at 
these energies, so measure flux × cross section 
on water.
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Fine Grain Detector—FGD 
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 Two modules, each ~1 ton. 

» 1 cm extruded scintillator bars/WLS/MPPCs

» 2nd module also has water layers.

» small bars ⇒ good proton reconstruction.




TPCs 

 Three rectangular TPCs with micromegas 
readout.

»   δp/p ~10% at 1 GeV is adequate (Fermi motion)

» Need to know momentum scale to 2%; distorts ν 

energy spectrum.

» dE/dx gives >3σ µ/e separation 0.3–1 GeV
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Tracker Beam Test at TRIUMF 
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TPC
 FGD


Performance as expected




              P0D 

 Optimized to measure 
neutral current π0 
production on water.


 Triangular scintillator 
bars/WLS fibers/lead/
water
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ND 280 Status 

  Infrastructure installation in progress

 Magnetic field mapping in July

 P0D, FGD, downstream ECAL and two TPCs 

will arrive by July and be installed early 
October.

» 3rd TPC should arrive December.

» Full side (barrel) ECAL in Summer 2010.
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FAR DETECTOR 
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Super-K 

 Large water Cherenkov detector: 50 kT total, 
22.5 kT fiducial.


  In operation since 1996; SK-IV started Sept 08 
with new electronics.
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Super-K Signals 

 CCQE for both νµ and νe spectra
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Full Data Set


νe signal sin22θ13 =0.1


beam νe 

νµ background


  Initial data set (fiducial): 

» ~100 νµ 

» ~9 νe for sin22θ13 = 0.1 (~4 after cuts compared to 

~0.8 background)


Atmospheric 
Neutrinos




OUTLOOK 
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Expected Power 

 First run starts Dec/Jan. Not clear if we will get 
the planned 100 kW on target until RFQ is 
replaced in Spring 2010.

» also split run time between slow and fast extraction.


  It will take a while to get full 750 kW on target  
(= 1 MW @ 3 GeV). 
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Plan for Power Ramp 
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Nominal

3 GeV Power




Plan for Power Ramp 

74


accelerator physicists 
plan/prediction


Nominal

3 GeV Power
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1st stage ~0.06


2nd stage ~0.013

Final ~0.006
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 We actually measure a 
function of θ13, δCP and 
matter effects/mass 
hierarchy.


  If we are lucky, compare 
with Double Chooz (no 
δ, no x) and NOνA 
(larger matter effects) to 
disentangle


Dependence on δCP 



Summary 

 J-PARC and T2K beam line commissioning is 
in progress and near detector installation will 
occur this summer.


 1st stage result on θ13 (Summer 2010? 2011?) 
should surpass existing limits. 


 Full dataset sensitivity to sin22θ13 ~ 0.01.

» but I hope we are not still talking about a limit at that 

time!
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BACKUP 
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Beam Monitor        
Intensity (CT)   5 
Beam position (ESM)‏  21 
Profile (SSEM)‏   19 
Profile (OTR@target)‏  1 
Beam loss monitor  50 

28 SC combined func mags

(+3 SC corr mags from BNL)


10 NC mags


Primary Beam Line 
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Tri-bimaximal PMNS Matrix 
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Mu-Chun Chen




NA-61 at CERN SPS 

 Beamline group is responsible for calculating 
the produced ν flux and spectrum. 


 Results from NA-61 are important input. Hadron 
production using 30 GeV p on T2K target.

» 3 week run in Aug 2009 
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Competition from Double Chooz 
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NOνA 
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upgrade NuMI from 
400 kW to 700 kW


15 kT liquid scintillator

0.8 deg off axis

Ready January 2014
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Antonin Vacheret, Imperial College London NuInt07,  May 30, June 3 2007 Fermilab

Novel  type  of  photosensor  :

 Geiger  Mode  multi- pixels  APD

17

ND280 Scintillator Detectors 
Constraints :

- Magnetic Field
- Very tight space constraints
- Low light yield at end of  WLS fibre
- High number of  channels
- Detector operation 5 years
 

GM-APDs 
- Insensitive to magnetic field, tested to 4T 

- Small (active area ~1mm2)
- Bias voltage 50V
- Photon detection efficiency >20% at 500nm
- Gain G~ 5x105

- Low power consumption
- Dark count rate ~0.5MHz/mm2 at 25ºC
- Longevity OK

Signal =
∑

i

Qpixel
i

 Photo-electron resolution 
+ dynamic range combined in 1 sensor

MPPC
MRS-APD

~40um

1mm2

~50um

1pe

2pe

3pe



Target Area 

 30 GeV protons strike 90 cm graphite target, 
creating π± and K±.


 Three horns focus π+, defocus π- 

 π+ → µ+ νµ in 110 m decay volume

 Muon monitor follows beam dump.
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