T2K Near Detector Time Projection Chambers and Calibration System

for the T2K collaboration, TPC Group

CAP Congress Memorial University June 13-17, 2011

André Gaudin, University of Victoria

Tokai-to-Kamiokande (T2K)

Near Detectors (J-PARC)

 Goal of the near detectors is to measure the beam properties before oscillation and neutrino interaction cross-sections

Talks: S. Giffin *FGDs* K. Mahn *NDs*

Time Projection Chambers (TPC)

- Installed in fall 2009, commissioned winter 2010
- Pairs of gas boxes (drift cambers):
 - active Ar:CF₄:iC₄H₁₀ (95:3:2 %)
 - outer CO₂
- Central cathode:2 drift regions
- Readout planes of 12 micromegas
- Main measurements:
 - momentum using track curvature
 - particle ID from energy loss

TPC PERFORMANCE

Micromegas

- TPC use 72 "bulk micromegas":
 - 12 per detector end
 - Pad pitch: 9.8 x 7.0 mm²
 - 1726 pads per micromegas
 - First use of "bulk-micromegas"
 - Show good performance:
 - 0.1 spark/hour
 - ~0.2% of pads unused (dead or sparking)

TPC Resolution

- Resolution goals for T2K TPCs:
 - Point resolution of ~0.7 mm, for tracks at maximum drift distance
 - Momentum resolution of 0.1 p₁ / (GeV/c) (from spatial resolution)

Particle ID

• The resolution of dE/dx is 7.8 ± 0.2% for minimum ionizing particles, better than the 10% requirement for the T2K TPCs.

CALIBRATION

Gain Calibration

- Aim:
 - Equalizes micromegas (MM) to MM over space and time
 - 1. Equalize pad to pad response: test measurements during production
 - 2. Refer all responses to a standard density:
 - a) Gain correction
 - b) dE/dx correction
 - 3. Equalize MM to MM: beam or cosmic tracks

Drift Velocity Calibration

- Calculated from cosmic data
- Uses minimum and maximum signal times from cosmics crossing the TPC central cathode and readout plane (micromegas)

Laser Photo-electron Calibration

- UV Laser (266 nm)
- Multiplexer and 18 distribution fibres
- Targets: Al dots and strips on cathodes

Used for:

- Timing calibration
- Field distortions measurements
- General testing trigger

Time Calibrations

- Calibrate for phase uncertainties between the micromegas electronics
 - can cause breaks in track continuity between micromegas
 - affects alignment results
- Laser provides the phase offsets
- Cosmic and beam data, relative time axis offsets to respective triggers

Laser Base Micromegas time offsets

Summary

- TPCs have operated well since installation in Fall 2009
- Low failure percentage on channels
- TPCs have met the performance goals set: spatial and momentum resolution, PID
- Calibrations are in place or being worked on currently

- Other T2K talks (following immediately):
 - S. Giffin: *FGDs*
 - M. Hartz: T2K Results and Prospects
 - K. Mahn: *Physics results, Near detectors*

Nuclear Instruments and Methods in Physics Research A

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nima

Time projection chambers for the T2K near detectors

N. Abgrall^m, B. Andrieu^f, P. Baron^e, P. Bene^m, V. Berardi^h, J. Beucher^e, P. Birney^{b,d}, F. Blaszczyk^e, A. Blondel^m, C. Bojechko^d, M. Boyer^e, F. Cadoux^m, D. Calvet^e, M.G. Catanesi^h, A. Cervera¹, P. Colas^e, X. De La Broise^e, E. Delagnes^e, A. Delbart^e, M. Di Marco^m, F. Druillole^e, J. Dumarchez^f, S. Emery^e, L. Escudero¹, W. Faszer^b, D. Ferrere^m, A. Ferrero^m, K. Fransham^d, A. Gaudin^d, C. Giganti^e, I. Giomataris^e, J. Giraud^e, M. Goyette^b, K. Hamano^b, C. Hearty^{c,a}, R. Henderson^b, S. Herlant^e, M. Ieva^k, B. Jamieson^c, G. Jover-Mañas^k, D. Karlen^{d,b,*}, I. Kato^b, A. Konaka^b, K. Laihem^g, R. Langstaff^{b,d}, M. Laveder^{j,i}, A. Le Coguie^e, O. Le Dortz^f, M. Le Ross^b, M. Lenckowski^{b,d}, T. Lux^k, M. Macaire^e, K. Mahn^{b,c}, F. Masciocchi^m, E. Mazzucato^e, M. Mezzettoⁱ, A. Miller^b, J.-Ph. Mols^e, L. Monfregola¹, E. Monmarthe^e, J. Myslik^d, F. Nizery^e, R. Openshaw^b, E. Perrin^m, F. Pierre^e, D. Pierrepont^e, P. Poffenberger^d, B. Popov^{f,1}, E. Radicioni^h, M. Ravonel^m, J.-M. Reymond^e, J.-L. Ritou^e, M. Roney^d, S. Roth^g, F. Sánchez^k, A. Sarrat^e, R. Schroeter^m, A. Stahl^g, P. Stamoulis¹, J. Steinmann^g, D. Terhorst^g, D. Terront^f, V. Tvaskis^d, M. Usseglio^e, A. Vallereau^f, G. Vasseur^e, I. Wendland^c, G. Wikström^m, M. Zito^e

^a Institute of Particle Physics, Canada

^b TRIUMF, Vancouver, Canada

^c Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada

^d Department of Physics and Astronomy, University of Victoria, Victoria, Canada

^e Irfu/DSM, CEA-Saclay, 91191 Gif/Yvette CEDEX, France

f LPNHE, IN2P3-CNRS, 75252 Paris CEDEX 05, France

^g III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

^h INFN, Sezione di Bari, Bari, Italy

ⁱ INFN, Sezione di Padova, Padova, Italy

^j University of Padova, Padova, Italy

^k Institut de Fisica d'Altes Energies, Barcelona, Spain

¹ IFIC, University of Valencia and CSIC, Valencia, Spain

^m Physics Section, University of Geneva, Switzerland

T2K paper (NIM A): The T2K Experiment, arXiv:1106.1238

NUCLEAR

RESEARC

SPARE SLIDES

Earthquake

- Tsunami did not affect
 J-PARC
- No T2K collaborators were injured
- No problems with Tokai reactors
- J-PARC and T2K have started recovery work
- Recently (May) the TPCs were tested and are full functional

Micromegas

Distortion Measurements

- Laser dot targets are used to measure distortions
- At right is comparison of position for B field on/off (TPC #3, downstream)
- Uses charge sharing between sets of 4 pads to estimate dot centers
- Repeated measurements: stand. dev ~0.5 mm

Gas Monitor Chambers

- Two monitor chambers in gas system
 - Small TPCs sampling input and output o

• Gain measurements: ⁵⁵Fe

Drift velocity: two ⁹⁰Sr

Ο