THE FINE GRAINED DETECTORS FOR THE T2K EXPERIMENT

CAP Congress St. John's, June 13-17, 2011

Spencer Giffin On behalf of the T2K FGD group UBC, Kyoto University, University of Regina, TRIUMF, University of Victoria

T2K Experiment

- > 2nd generation long baseline neutrino oscillation experiment
- > Precision measurement of v_{μ} disappearance -> θ_{23} and Δm_{23}^2
- > Search for v_{μ} to v_{e} appearance -> first measurement of θ_{13}

See talks by Mark Hartz And Kendall Mahn

Fine Grained Detectors (FGDs)

- Active target mass of ND280
- Finely grained for vertex resolution
- Reconstruct and identify short tracks

Key channel for oscillation analysis: Charged Current Quasi Elastic (CCQE)

- Scintillator Bars: 9.6mm x 9.6mm x 1843mm
- FGD1: 15 modules (30 layers)
- FGD2: 7 modules (14 layers) + 6 water panels
- > 8448 channels in total
- Each is ~1.1 ton

- Light from scintillator bars collected by Wavelength Shifting (WLS) fibers
- Propagates down fibers to Multi Pixel Photon Counters (MPPCs)

Mirrored End of WLS:

➤ Aluminum

Increases overall light yield

LEDs:

Flash to test fiber integrity

MPPCs:

- ➤ 1.3mm x 1.3mm
- 667 pixels (avalanche photodiodes)
- Signal ~ pixels fired
- Insensitive to B-field
- > 1st large scale use!

Hamamatsu

MPPC

Busboard:
 16 MPPCs
 Alternate ended readout

FGD Calibration

> MPPC+Fiber Calibration:

Determine single photon-electron (p.e.) from dark noise

- Various effects accounted for:
 - ➢ MPPC saturation
 - Bar to Bar: Fiber-MPPC coupling and scintillator non-uniformity
 - Light Attenuation
 - Second Order Effects:

Crosstalk, photon detection efficiency, afterpulsing

Can predict single p.e. pulseheight as temperature and operating voltage vary

Based on parameters from voltage scans

> Particle Identification:

Clear separation of protons from pions/muons using energy deposition per unit length of track

Cosmics

FGD can self trigger based on coincidences of analog sums of pulse heights

Deposited photoelectron per layer vs. pathlength

Timing Difference between FGDs

Can distinguish direction of track based on timingIdentify backward going tracks

Beam Arrival Time

Timing distribution

2010 Data

Beam Profile in FGD

Cuts applied:

- Hit clustering within expected beam time
- Fiducial Volume
- Charged Current-like selection

=> See off-axis effects!

Beam Center

FGD Linear Response to Beam

- Apply all previous cuts (except Charged Current-like selection)
- Good spills only (based on beam data quality selections)
- The number of events is proportional to total protons on target (POT) => FGD stable!

Summary

- Completed 9 months of quality data taking!
 1.43 x 10²⁰ POT
- Capable of distinguishing backwards going tracks
- Beam structure seen without using accelerator data (timing, profile)
- FGD has stable event rate/POT
- For more details, see (NEW!) T2K NIM paper:
 arXiv:1106.1238

Backup Slides

FGD Status

Tsunami did not affect JPARC site (very fortunate!) No injuries to personnel Post-earthquake recovery efforts progressing well

Other FGD Progress

- Evolving 2D to 3D track matching algorithms
- Alignment
- Preliminary studies comparing FGD to TPC energy loss

Electronics

Front-End Boards (FEBs):

- > Digitize waveform
- Split into high/low attenuation
- **Crate Master Board (CMB):**
- Transmit data from FEBs to Data Concentrator Board
- Pass along triggers

Data Concentrator Board (DCC):

Gather data and pass to computers

Light Pulser Board (LPB):

- Flash LED at far end of fiber
- Integrity of fiber/MPPC

Slow control readout on all boards (temperature, power, etc.) Continued to function for 1 hour on UPS after Mar 11 earthquake

Other MPPC Parameters

- ➢ Gain ~10⁶
- Operating Voltage 68 71 V
- Photon Detection Efficiency (525 nm):
 26 30 %
- > Pixel Size 50 x 50 μ m²
- Dark Noise Rate: ~MHz
- ≻ ~64,000 produced for T2K
- Used in:
 - > INGRID 9592
 - ➢ P0D − 10400
 - ≻ FGD 8448
 - ➢ ECAL − 22336
 - > SMRD 4016

Hamamatsu

MPPC

FGD Cosmic trigger:

- > ASUM group: sum of pulseheight for 8 channels with own threshold
- 2 ASUM groups per busboard
- Require 1 ASUM group per projection per FGD to fire for trigger

Sum 8 Channels

1D Beam Profile

Cuts applied:

- Within expected beam time
- Remove Noise (time clustering and
 - low p.e. removal)
- > 4+ hits in cluster
- Most upstream hit inside FGD
 - Fiducial Volume (FV)
 - 2 layers front
 - ➤ 5 layers side
- Charged Current-like selection: 3+

continuous hits

Date