# T2K 280m detector

D. Karlen University of Victoria and TRIUMF, Canada

Representing the ND280 group of the T2K collaboration

# Outline

- Brief reminder of the physics goals of the T2K long baseline neutrino oscillation experiment
  - requirements for the near detectors
- Baseline design of the off axis ND280m detector
  - selected technologies
  - expected capabilities

Timescales for construction and initial operation

# **T2K physics program**

- The proton beam from the 50 GeV synchrotron under construction at JPARC will be used to produce an intense neutrino beam directed to the Super Kamiokande detector (295 km away)
  - measurement of  $\nu_{\mu}$  disappearance to improve accuracy for:

$$\sin^2 2\theta_{23} \rightarrow \approx 1\%$$
  $\Delta m_{23}^2 \rightarrow \approx 2\%$ 

• measurement of  $v_e$  appearance to improve sensitivity to  $\sin^2 2\theta_{13}$  by an order of magnitude

# **JPARC** facility



### **T2K neutrino beamline**

#### to oscillation maximum Flux (10<sup>6</sup>/20MeV/cm<sup>2</sup>/yr) 0 7 8 9 9 9 9 9 9 3° 2.5° **2**° 0 0.5 1.5 2 n Ev (GeV)

Use off-axis principle



### T2K near detectors: muon monitor

- A muon monitor system is directly downstream of the beam dump:
  - a real time status monitor sensitive to
    - proton intensity
    - proton beam position on target
    - horn performance
- Combination of detector technologies:
  - He gas ion chambers
  - semiconductor detectors possibly diamond

### T2K near detectors: on axis v monitor

Located 280 m downstream of the proton target

- monitor v beam properties on a day-by-day basis
  - centre
  - profile
- iron-scintillator stacks



### T2K near detectors: off axis v detector

- Located 280 m downstream of the proton target
- measure neutrino beam properties and neutrino interaction cross sections and kinematics
  - $v_{\mu}$  disappearance:
    - flux and spectrum of  $v_{\mu}$  prior to oscillation
    - study processes that SK will misinterpret and assign an incorrect  $\nu_{\mu}$  energy
  - v<sub>e</sub> appearance:
    - flux and spectrum of  $v_e$  in beam
    - $\bullet$  study processes that SK will misinterpret as coming from  $\nu_e$
- requires a large, highly segmented detector
  - charged, neutral energy measurements, particle ID

# ND280 group

Canada

- UBC, Regina, Toronto, Victoria, TRIUMF, York
- France
  - CEA/Saclay
- Italy
  - Bari, Napoli, Padova, Rome
- Japan
  - Hiroshima, KEK, Kobe, Kyoto, ICRR, Tokyo
- Korea
  - Chonnam, Dongshin, Kangwon, Kyungpook, Gyeongsang, Sejong, Seoul, SungKyunKwan

- Russia
  - INR Moscow
- Spain
  - Barcelona, Valencia

- Switzerland
  - Geneva
- United Kingdom
  - Imperial, Lancaster, Liverpool, Queen Mary, CCLRC, Sheffield, Warwick
- United States
  - Louisiana State, Stony Brook, Rochester, Washington

# ND280 off axis detector: overview

- UA1 magnet provides 0.2 T B field
- inner volume:
  3.5×3.6×7.0 m<sup>3</sup>
- front optimized for π<sup>0</sup> from NC
- rear optimized for CC studies
- surrounded by ECAL and muon detector



- designed to make high statistics measurements of v interactions with electromagnetically showering particles
  - scintillating bar tracking planes
  - front section interleaved with passive water layers (blue)
    - statistical subtraction of events in rear from front used to determine oxygen cross sections





- co-extruded triangular polystyrene bars with TiO<sub>2</sub> reflective layer and central hole with WLS fiber
- thin (0.6 mm) lead sheets (red) to promote photon conversion

#### • Typical NC single $\pi^0$ production events:

0.5 GeV/c  $\pi^0$  + 1 GeV/c proton



0.5 GeV/c  $\pi^0$  + undetected neutron

T2K 280m detector / D. Karlen / U. Victoria and TRIUMF

-50

-50

0

- With a fiducial mass of 1.7 tons of water, expect ~17×10<sup>3</sup> NC single π<sup>0</sup> events in the water target for 10<sup>21</sup> protons on target (one nominal year)
  - must determine water cross sections by statistical subtraction (from total of ~60×10<sup>3</sup> such events)
  - eff. for  $\pi^0$  reconstruction, p > 200 MeV/c: 50-60%
  - $\pi^0$  fake rate ~ 20%

• Ample statistics to help improve MC simulations

# Tracker

- The tracker is optimized to study neutrino interactions that produce charged particles:
  - $\nu_{\mu}$  CC quasi-elastic (CCQE) interactions to measure the  $\nu_{\mu}$  flux and spectrum prior to oscillation
  - ν<sub>µ</sub> CC in-elastic interactions that can be misinterpreted by SK to be CCQE, and thus assigning an incorrect ν<sub>µ</sub> energy
  - $v_{\mu}$  NC in-elastic interactions that produce  $\pi^+$  and  $\pi^-$  that can be misinterpreted by SK to be CCQE
  - $v_e$  CCQE interactions, to determine the  $v_e$  flux and spectrum, an important background to  $v_e$  appearance at SK

# Tracker

 consists of solid active target modules (FGD) and gas time projection chamber modules (TPC)



### **Tracker - FGD**

- each FGD:  $2 \times 2 \times 0.3$  m<sup>3</sup> target volume
- scintillator bars: 1 × 1 × 200 cm<sup>3</sup> arranged in alternating x-y planes
  - fine segmentation needed to track low energy protons, in order to distinguish CCQE and non-elastic
- the back FGD will contain water layers
  - initially 3~cm passive water layers between each x-y scintillator plane
  - active program to produce water-based scintillator for a future upgrade
- plan to use "SiPM" devices for readout

### **Tracker - TPC**



### **Tracker - TPC**

- readout segmented into 8 × 8 mm<sup>2</sup> pads
- width of active volume: 600 mm per module
  - detailed full simulation:



- full reconstruction:  $\delta p/p < 10\%$  for p < 1 GeV/c
- dE/dx resolution: ~ 7%
  - $\bullet$  sufficient for  $\mu$  / e separation

# Tracker – $v_{\mu}$ CC event



### Tracker – $v_e$ CC event



# Tracker

- With ~ 1.2 ton total mass in each FGD module, expect ~ 4 × 10<sup>5</sup> neutrino interactions in the tracker in a nominal year (10<sup>21</sup> POT)
  - fiducial cuts, efficiency reduce this, but ample statistics for tuning MC simulations
- Note that combined, the TPC inner volumes hold
  ~ 16 kg gas, resulting in ~ 2 × 10<sup>3</sup> neutrino
  interactions in a nominal year
  - an interesting sample all charged particles tracked

# ECAL

- An electromagnetic calorimeter surrounds the Pi-zero detector and the Tracker:
  - to measure photons, primarily from  $\pi^0$  production
  - $\bullet$  to distinguish e and  $\mu$
- Conceptual design not complete
  - lead/scintillator stack
  - reasonable lateral and longitudinal segmentation appears to provide sufficient pointing accuracy for reconstructing  $\pi^0$  's from neutrino interactions in the Tracker
    - $\pi^0$  mass cut helps purity and to identify which FGD plane was involved

### **ECAL**

#### segmentation schemes under study





# Side muon range detector (SMRD)

- The yoke of the UA1 magnet was made with 1.7 cm gaps between iron plates
- SMRD will consist of 6-7 layers of the gaps instrumented with scintillator slabs
  - muons produced in the FGD at an angle near 90° or those produced at large angles in the Pi-zero detector cannot be measured by the TPCs – the SMRD can provide muon energy measurement to < 10%</li>
  - in addition SMRD will be useful to veto activity from neutrino interactions in magnet or walls, and will form the basis for a cosmic trigger for calibrations if the inner detectors

# Schedule

- Neutrino beamline commissioning: April 2009
- ND280 groups now seeking construction funding
- Apr 2007: ND280 hall construction start
- May 2008: Install magnet
- Aug-Dec 2008: complete ND280 building
- Jan 2009: begin installation of ND280 detectors
  - on axis detector
  - off axis Tracker
- Summer/Fall 2009: install remaining detectors

# Summary

- T2K experiment is an exciting opportunity to extend our understanding of neutrino oscillations
- A number of detectors near the proton target are necessary to achieve the physics goals
- The off axis near detector is expected to provide a wealth of information on low energy neutrino interactions
- A lot of work ahead of us a real challenge to be ready in time!

# **Extra slides**



### neutrino spectra



### muon disappearance



# sensitivity to $\theta_{13}$



September 27, 2005

31

### neutrino specta across off axis detector

![](_page_31_Figure_1.jpeg)

September 27, 2005

T2K 280m detector / D. Karlen / U. Victoria and TRIUMF

### muon properties in ND280

![](_page_32_Figure_1.jpeg)

### proton momenta at ND280

![](_page_33_Figure_1.jpeg)

## pi-zero distribution in ND280

![](_page_34_Figure_1.jpeg)

# **Silicon Photomultiplier**

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

### **Beam power at JPARC**

![](_page_36_Figure_1.jpeg)