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Dear Dr. McFarland,


I recently had the pleasure of returning to TRIUMF, on UBC campus, for my third work term.  During my time there, I performed general research and produced several prototypes of a Fine Grained Detector (FGD) that is going to be used in the 280m Near Detector as part of the Tokai to Kamioka (T2K) Neutrino Oscillation Experiment.  The FGD will contain a water based liquid scintillator, which I perfected in my last coop work term.  My main task was to produce small scale prototypes of the FGD to test various aspects of the intended design.  I also performed several experiments on the liquid scintillator’s properties and on the durability of some materials intended for use in the FGD.  I worked directly under Dr. Stanley Yen, and our Neutrino group leader was Dr. Akira Konaka.


The conclusion of the solar neutrino detection experiments conducted at SNO in 2001 confirmed that neutrinos oscillate between (e, ((, (( and mixtures of all three while on route to the Earth from the Sun.  Since then, attempts to better understand neutrino oscillations have sprung up and many theories are currently under scrutiny.  The T2K experiment hopes to narrow down the field of possible explanations by testing the rate that (( turn into (e over a distance of 295km.  To detect a change from one neutrino type to another, the number of neutrinos of each type must be known at the source (280m Near Detector) and at the end of the baseline.  The Near Detector will be placed 280m beyond the neutrino source (J-PARC) and the Far Detector, Super Kamiokande, will detect the neutrinos when they reach Kamioka, Japan, which is 295km from Tokai, Japan.  The Near Detector is currently planning to use long, thin, square tubes to hold a liquid scintillator that will detect the neutrinos.  Several aspects of this design must be controlled to produce the strongest possible light yield.  Such aspects include the reflectivity of the walls of the square tubes, the clarity of the liquid scintillator, the size of the wavelength shifting fiber that runs the length of the tube and the overall size of the FGD, which can control the loss of light due to attenuation.  This paper is concerned with the experiments performed to improve our understanding of how to optimize those aspects.

My report is written in a journal article style and is aimed at an audience with my level of education; although, some previous knowledge of neutrinos would be an asset.  The report was edited by my supervisor, Dr. Yen and my girlfriend.
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Patrick Bonnick
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